Knockdown of MADD and c-FLIP overcomes resistance to TRAIL-induced apoptosis in ovarian cancer cells

敲低 MADD 和 c-FLIP 可克服卵巢癌细胞对 TRAIL 诱导的细胞凋亡的抵抗

阅读:5
作者:Liang-Cheng Li, Shankar Jayaram, Lakshmy Ganesh, Lixia Qian, Jacob Rotmensch, Ajay V Maker, Bellur S Prabhakar

Conclusion

MADD/c-FLIP(L) knockdown can render TRAIL-resistant ovarian cancer cells susceptible to TRAIL.

Objective

The clinical utility of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in the treatment of established human malignancies is limited by the development of resistance to TRAIL. We hypothesized that knockdown of map-kinase activating death domain containing protein (MADD), a TRAIL-resistance factor, may overcome TRAIL resistance in ovarian cancer cells. Study design: MADD expression in resected ovarian cancer specimens and cell lines was quantified with the use of polymerase chain reaction. Sensitivity of ovarian cancer cell lines to TRAIL, with or without MADD knockdown, was assessed.

Results

MADD is expressed at relatively higher levels in human malignant ovarian cancer tissues and cell lines, compared with normal ovarian tissues. The cell lines OVCA429 and OVCAR3 were susceptible, and cell lines CAOV-3 and SKOV-3 were resistant to TRAIL. MADD knockdown in CAOV-3 cells, but not in SKOV-3 cells, conferred TRAIL sensitivity. Knockdown of cellular Fas-associated death domain-like interleukin-1 beta-converting enzyme-inhibitory protein (c-FLIP) in SKOV-3 cells increased spontaneous and TRAIL-induced apoptosis, which was further increased on MADD knockdown.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。