Mechanism of hyperbaric oxygen therapy downregulating H-type angiogenesis in subchondral bone of knee osteoarthritis through the PHD2/HIF-1α pathway

高压氧治疗通过PHD2/HIF-1α通路下调膝骨关节炎软骨下骨H型血管生成的机制

阅读:6
作者:Jianjian Wang #, Wen Yu #, Yuxin Zhang, Bo Chen, Zhaoxiang Meng

Conclusion

The hyperbaric oxygen environment promotes the expression of PHD2, accelerates the degradation of HIF-1α, and inhibits the production of VEGFA, thereby reducing the generation of type H vessels in subchondral bone.

Methods

Mice were randomly divided into three groups (control group, osteoarthritis group, and hyperbaric oxygen treatment group). The effect of hyperbaric oxygen therapy on osteoarthritis was evaluated using Micro-CT, Safranin O-Fast Green staining, and detection of osteoarthritis inflammation markers (MMP-13, ADAMTS-5, Col2a1, and Aggrecan). The activation relationship between PHD2 and downstream signaling pathways was investigated through gene knockout and overexpression experiments. Finally, cell scratch assays, tube formation assays, and chondrogenic differentiation experiments were conducted to verify the mechanism of the PHD2/HIF-1α signaling pathway under hyperbaric oxygen stimulation.

Objective

To explore the mechanism of hyperbaric oxygen therapy in inhibiting subchondral bone angiogenesis and delaying the progression of osteoarthritis through the PHD2/HIF-1α signaling pathway.

Results

Hyperbaric oxygen therapy delayed the progression of osteoarthritis in mice. It promoted chondrogenic differentiation of mesenchymal stem cells, inhibited angiogenesis, enhanced PHD2 expression, and suppressed the production of HIF-1α and VEGFA. Silencing/overexpression of PHD2 resulted in increased/decreased production of HIF-1α and VEGFA, respectively.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。