Prostaglandin E2 stimulates the production of amyloid-beta peptides through internalization of the EP4 receptor

前列腺素 E2 通过内化 EP4 受体刺激淀粉样β肽的产生

阅读:7
作者:Tatsuya Hoshino, Takushi Namba, Masaya Takehara, Tadashi Nakaya, Yukihiko Sugimoto, Wataru Araki, Shuh Narumiya, Toshiharu Suzuki, Tohru Mizushima

Abstract

Amyloid-beta (Abeta) peptides, generated by the proteolysis of beta-amyloid precursor protein by beta- and gamma-secretases, play an important role in the pathogenesis of Alzheimer disease. Inflammation is also important. We recently reported that prostaglandin E(2) (PGE(2)), a strong inducer of inflammation, stimulates the production of Abeta through EP(2) and EP(4) receptors, and here we have examined the molecular mechanism. Activation of EP(2) and EP(4) receptors is coupled to an increase in cellular cAMP levels and activation of protein kinase A (PKA). We found that inhibitors of adenylate cyclase and PKA suppress EP(2), but not EP(4), receptor-mediated stimulation of the Abeta production. In contrast, inhibitors of endocytosis suppressed EP(4), but not EP(2), receptor-mediated stimulation. Activation of gamma-secretase was observed with the activation of EP(4) receptors but not EP(2) receptors. PGE(2)-dependent internalization of the EP(4) receptor was observed, and cells expressing a mutant EP(4) receptor lacking the internalization activity did not exhibit PGE(2)-stimulated production of Abeta. A physical interaction between the EP(4) receptor and PS-1, a catalytic subunit of gamma-secretases, was revealed by immunoprecipitation assays. PGE(2)-induced internalization of PS-1 and co-localization of EP(4), PS-1, and Rab7 (a marker of late endosomes and lysosomes) was observed. Co-localization of PS-1 and Rab7 was also observed in the brain of wild-type mice but not of EP(4) receptor null mice. These results suggest that PGE(2)-stimulated production of Abeta involves EP(4) receptor-mediated endocytosis of PS-1 followed by activation of the gamma-secretase, as well as EP(2) receptor-dependent activation of adenylate cyclase and PKA, both of which are important in the inflammation-mediated progression of Alzheimer disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。