3D-printed scaffold combined to 2D osteoinductive coatings to repair a critical-size mandibular bone defect

3D 打印支架与 2D 骨诱导涂层相结合修复临界尺寸下颌骨缺损

阅读:7
作者:M Bouyer, C Garot, P Machillot, J Vollaire, V Fitzpatrick, S Morand, J Boutonnat, V Josserand, G Bettega, C Picart

Abstract

The reconstruction of large bone defects (12 cm3) remains a challenge for clinicians. We developed a new critical-size mandibular bone defect model on a minipig, close to human clinical issues. We analyzed the bone reconstruction obtained by a 3D-printed scaffold made of clinical-grade polylactic acid (PLA), coated with a polyelectrolyte film delivering an osteogenic bioactive molecule (BMP-2). We compared the results (computed tomography scans, microcomputed tomography scans, histology) to the gold standard solution, bone autograft. We demonstrated that the dose of BMP-2 delivered from the scaffold significantly influenced the amount of regenerated bone and the repair kinetics, with a clear BMP-2 dose-dependence. Bone was homogeneously formed inside the scaffold without ectopic bone formation. The bone repair was as good as for the bone autograft. The BMP-2 doses applied in our study were reduced 20- to 75-fold compared to the commercial collagen sponges used in the current clinical applications, without any adverse effects. Three-dimensional printed PLA scaffolds loaded with reduced doses of BMP-2 may be a safe and simple solution for large bone defects faced in the clinic.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。