Suppression of GFAP toxicity by alphaB-crystallin in mouse models of Alexander disease

αB-晶体蛋白在亚历山大病小鼠模型中抑制 GFAP 毒性

阅读:5
作者:Tracy L Hagemann, Wilbert C Boelens, Eric F Wawrousek, Albee Messing

Abstract

Alexander disease (AxD) is a primary disorder of astrocytes caused by dominant mutations in the gene for glial fibrillary acidic protein (GFAP). These mutations lead to protein aggregation and formation of Rosenthal fibers, complex astrocytic inclusions that contain GFAP, vimentin, plectin, ubiquitin, Hsp27 and alphaB-crystallin. The small heat shock protein alphaB-crystallin (Cryab) regulates GFAP assembly, and elevation of Cryab is a consistent feature of AxD; however, its role in Rosenthal fibers and AxD pathology is not known. Here, we show in AxD mouse models that loss of Cryab results in increased mortality, whereas elevation of Cryab rescues animals from terminal seizures. When mice with Rosenthal fibers induced by over-expression of GFAP are crossed into a Cryab-null background, over half die at 1 month of age. Restoration of Cryab expression through the GFAP promoter reverses this outcome, showing the effect is astrocyte-specific. Conversely, in mice engineered to express both AxD-associated mutations and elevated GFAP, which despite natural induction of Cryab also die at 1 month, transgenic over-expression of Cryab results in a markedly reduced CNS stress response, restores expression of the glutamate transporter Glt1 (EAAT2) and protects these animals from death. In its most common form, AxD is a devastating neurodegenerative disease, with early onset, characterized by seizures, spasticity and developmental delays, ultimately leading to death. Cryab plays a critical role in tempering AxD pathology and should be investigated as a therapeutic target for this and other diseases with astropathology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。