A Hypoxic Environment Attenuates Exercise-Induced Procoagulant Changes Due to Decreased Platelet Activation

缺氧环境可减弱因血小板活化减少而引起的运动诱发的促凝血变化

阅读:4
作者:Cécile H Kicken, Lisa N van der Vorm, Suzanne Zwaveling, Evi Schoenmaker, Jasper A Remijn, Dana Huskens, Bas de Laat

Abstract

Introduction Although physical exercise is protective against cardiovascular disease, it can also provoke sudden cardiac death (exercise paradox). Epidemiological studies suggest that systemic hypoxia at high altitude is a risk factor for venous thromboembolism. Forthcoming, this study investigated the effect of repeated exercise at high altitude on blood coagulation, platelet function, and fibrinolysis. Methods Six trained male volunteers were recruited. Participants ascended from sea level to 3,375 m altitude. They performed four exercise tests at 65 to 80% of their heart-rate reserve during 2 hours: one time at sea level and three times on consecutive days at 3,375 m altitude. Thrombin generation (TG) was measured in whole blood (WB) and platelet-rich and platelet-poor plasma. Coagulation factor levels were measured. Platelet activation was measured as αIIbβ3 activation and P-selectin expression. Fibrinolysis was studied using a clot-lysis assay. Results Normoxic exercise increased plasma peak TG through increased factor VIII (FVIII), and increased von Willebrand factor (VWF) and active VWF levels. Platelet granule release potential was slightly decreased. After repetitive hypoxic exercise, the increase in (active) VWF tapered, and there was no more distinct exercise-related increase in peak. Platelet aggregation potential and platelet-dependent TG decreased at high altitude. There were no effects on fibrinolysis upon exercise and/or hypoxia. Conclusion Strenuous exercise induces a procoagulant state that is mediated by the endothelium, by increasing VWF and secondarily raising FVIII levels. After repetitive exercise, the amplitude of the endothelial response to exercise diminishes. A hypoxic environment appears to further attenuate the procoagulant changes by decreasing platelet activation and platelet-dependent TG.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。