5-HT6 receptor blockade regulates primary cilia morphology in striatal neurons

5-HT6 受体阻断调节纹状体神经元初级纤毛形态

阅读:4
作者:Matthew Brodsky, Adam J Lesiak, Alex Croicu, Nathalie Cohenca, Jane M Sullivan, John F Neumaier

Abstract

The 5-HT6 receptor has been implicated in a variety of cognitive processes including habitual behaviors, learning, and memory. It is found almost exclusively in the brain, is expressed abundantly in striatum, and localizes to neuronal primary cilia. Primary cilia are antenna-like, sensory organelles found on most neurons that receive both chemical and mechanical signals from other cells and the surrounding environment; however, the effect of 5-HT6 receptor function on cellular morphology has not been examined. We confirmed that 5-HT6 receptors were localized to primary cilia in wild-type (WT) but not 5-HT6 knockout (5-HT6KO) in both native mouse brain tissue and primary cultured striatal neurons then used primary neurons cultured from WT or 5-HT6KO mice to study the function of these receptors. Selective 5-HT6 antagonists reduced cilia length in neurons cultured from wild-type mice in a concentration and time-dependent manner without altering dendrites, but had no effect on cilia length in 5-HT6KO cultured neurons. Varying the expression levels of heterologously expressed 5-HT6 receptors affected the fidelity of ciliary localization in both WT and 5-HT6KO neurons; overexpression lead to increasing amounts of 5-HT6 localization outside of the cilia but did not alter cilia morphology. Introducing discrete mutations into the third cytoplasmic loop of the 5-HT6 receptor greatly reduced, but did not entirely eliminate, trafficking of the 5-HT6 receptor to primary cilia. These data suggest that blocking 5-HT6 receptor activity reduces the length of primary cilia and that mechanisms that regulate trafficking of 5-HT6 receptors to cilia are more complex than previously thought.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。