Inferring bacterial transmission dynamics using deep sequencing genomic surveillance data

利用深度测序基因组监测数据推断细菌传播动态

阅读:6
作者:Madikay Senghore #, Hannah Read #, Priyali Oza, Sarah Johnson, Hemanoel Passarelli-Araujo, Bradford P Taylor, Stephen Ashley, Alex Grey, Alanna Callendrello, Robyn Lee, Matthew R Goddard, Thomas Lumley, William P Hanage, Siouxsie Wiles0

Abstract

Identifying and interrupting transmission chains is important for controlling infectious diseases. One way to identify transmission pairs - two hosts in which infection was transmitted from one to the other - is using the variation of the pathogen within each single host (within-host variation). However, the role of such variation in transmission is understudied due to a lack of experimental and clinical datasets that capture pathogen diversity in both donor and recipient hosts. In this work, we assess the utility of deep-sequenced genomic surveillance (where genomic regions are sequenced hundreds to thousands of times) using a mouse transmission model involving controlled spread of the pathogenic bacterium Citrobacter rodentium from infected to naïve female animals. We observe that within-host single nucleotide variants (iSNVs) are maintained over multiple transmission steps and present a model for inferring the likelihood that a given pair of sequenced samples are linked by transmission. In this work we show that, beyond the presence and absence of within-host variants, differences arising in the relative abundance of iSNVs (allelic frequency) can infer transmission pairs more precisely. Our approach further highlights the critical role bottlenecks play in reserving the within-host diversity during transmission.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。