New dual-function in situ bone repair scaffolds promote osteogenesis and reduce infection

新型双功能原位骨修复支架促进成骨并减少感染

阅读:4
作者:Changsheng Yang #, Lei Zhou #, Xiaodan Geng #, Hui Zhang, Baolong Wang, Bin Ning

Background

The treatment of infectious bone defects is a difficult problem to be solved in the clinic. In situ bone defect repair scaffolds with anti-infection and osteogenic abilities can effectively deal with infectious bone defects. In this study, an in situ polycaprolactone (PCL) scaffold containing ampicillin (Amp) and Mg microspheres was prepared by 3D printing technology.

Conclusions

This kind of dual-function in situ bone repair scaffold with anti-infection and osteogenic abilities has good application prospects in the field of treating infectious bone defects.

Results

Mg and Amp were evenly distributed in PCL scaffolds and could be released slowly to the surrounding defect sites with the degradation of scaffolds. In vitro experiments demonstrated that the PCL scaffold containing Mg and Amp (PCL@Mg/Amp) demonstrated good cell adhesion and proliferation. The osteogenic genes collagen I (COL-I) and Runx2 were upregulated in cells grown on the PCL@Mg/Amp scaffold. The PCL@Mg/Amp scaffold also demonstrated excellent antibacterial ability against E. coli and S. aureus. In vivo experiments showed that the PCL@Mg/Amp scaffold had the strongest ability to promote tibial defect repair in rats compared with the other groups of scaffolds. Conclusions: This kind of dual-function in situ bone repair scaffold with anti-infection and osteogenic abilities has good application prospects in the field of treating infectious bone defects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。