Longitudinal Monitoring of Angiogenesis in a Murine Window Chamber Model In Vivo

小鼠窗室模型体内血管生成的纵向监测

阅读:17
作者:Zhanpeng Xu, Wei Zhang, Carole Quesada, Xueding Wang, Mario Fabiilli

Abstract

Angiogenesis induced by growth factor administration, which can augment the blood supply in regenerative applications, has drawn wide attention in medical research. Longitudinal monitoring of vascular structure and development in vivo is important for understanding and evaluating the dynamics of involved biological processes. In this work, a dual-modality imaging system consisting of photoacoustic microscopy (PAM) and optical coherence tomography (OCT) was applied for noninvasive in vivo imaging of angiogenesis in a murine model. Fibrin scaffolds, with and without basic fibroblast growth factor (bFGF), were implanted in a flexible imaging window and longitudinally observed over 9 days. Imaging was conducted at 3, 5, 7, and 9 days after implantation to monitor vascularization in and around the scaffold. Several morphometric parameters were derived from the PAM images, including vessel area density (VAD), total vessel length (TVL), and vessel mean diameter (VMD). On days 7 and 9, mice receiving bFGF-laden fibrin gels exhibited significantly larger VAD and TVL compared to mice with fibrin-only gels. In addition, VMD significantly decreased in +bFGF mice versus fibrin-only mice on days 7 and 9. Blood vessel density, evaluated using immunohistochemical staining of explanted gels and underlying tissue on day 9, corroborated the findings from the PAM images. Overall, the experimental results highlight the utility of a dual-modality imaging system in longitudinally monitoring of vasculature in vivo with high resolution and sensitivity, thereby providing an effective tool to study angiogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。