Engineered Aging Cardiac Tissue Chip Model for Studying Cardiovascular Disease

用于研究心血管疾病的工程老化心脏组织芯片模型

阅读:5
作者:Sachin Budhathoki, Caleb Graham, Palaniappan Sethu, Ramaswamy Kannappan

Abstract

Due to the rapidly growing number of older people worldwide and the concomitant increase in cardiovascular complications, there is an urgent need for age-related cardiac disease modeling and drug screening platforms. In the present study, we developed a cardiac tissue chip model that incorporates hemodynamic loading and mimics essential aspects of the infarcted aging heart. We induced cellular senescence in H9c2 myoblasts using low-dose doxorubicin treatment. These senescent cells were then used to engineer cardiac tissue fibers, which were subjected to hemodynamic stresses associated with pressure-volume changes in the heart. Myocardial ischemia was modeled in the engineered cardiac tissue via hypoxic treatment. Our results clearly show that acute low-dose doxorubicin treatment-induced senescence, as evidenced by morphological and molecular markers, including enlarged and flattened nuclei, DNA damage response foci, and increased expression of cell cycle inhibitor p16INK4a, p53, and ROS. Under normal hemodynamic load, the engineered cardiac tissues demonstrated cell alignment and retained cardiac cell characteristics. Our senescent cardiac tissue model of hypoxia-induced myocardial infarction recapitulated the pathological disease hallmarks such as increased cell death and upregulated expression of ANP and BNP. In conclusion, the described methodology provides a novel approach to generate stress-induced aging cardiac cell phenotypes and engineer cardiac tissue chip models to study the cardiovascular disease pathologies associated with aging.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。