Inhibition of GGPPS1 attenuated LPS-induced acute lung injury and was associated with NLRP3 inflammasome suppression

抑制 GGPPS1 可减轻 LPS 诱发的急性肺损伤,并与 NLRP3 炎症小体抑制有关

阅读:5
作者:Wu-Jian Xu, Xiao-Xia Wang, Jia-Jia Jin, Qian Zou, Lin Wu, Tang-Feng Lv, Bing Wan, Ping Zhan, Su-Hua Zhu, Hong-Bing Liu, Ning-Wei Zhao, Chao-Jun Li, Yong Song

Abstract

Inhibition of the mevalonate pathway using statins has been shown to be beneficial in the treatment of acute lung injury (ALI). Here, we investigated whether partial inhibition of this pathway by targeting geranylgeranyl pyrophosphate synthase large subunit 1 (GGPPS1), a catalase downstream of the mevalonate pathway, was effective at treating lung inflammation in ALI. Lipopolysaccharide (LPS) was intratracheally instilled to induce ALI in lung-specific GGPPS1-knockout and wild-type mice. Expression of GGPPS1 in lung tissues and alveolar epithelial cells was examined. The severity of lung injury and inflammation was determined in lung-specific GGPPS1 knockout and wild-type mice by measuring alveolar exudate, neutrophil infiltration, lung injury, and cell death. Change in global gene expression in response to GGPPS1 depletion was measured using mRNA microarray and verified in vivo and in vitro. We found that GGPPS1 levels increased significantly in lung tissues and alveolar epithelial cells in LPS-induced ALI mice. Compared with wild-type and simvastatin treated mice, the specific deletion of pulmonary GGPPS1 attenuated the severity of lung injury by inhibiting apoptosis of AECs. Furthermore, deletion of GGPPS1 inhibited LPS-induced inflammasome activation, in terms of IL-1β release and pyroptosis, by downregulating NLRP3 expression. Finally, downregulation of GGPPS1 reduced the membrane expression of Ras-related protein Rab10 and Toll-like receptor 4 (TLR4) and inhibited the phosphonation of IκB. This effect might be attributed to the downregulation of GGPP levels. Our results suggested that inhibition of pulmonary GGPPS1 attenuated LPS-induced ALI predominantly by suppressing the NLRP3 inflammasome through Rab10-mediated TLR4 replenishment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。