Biosynthesis of the nosiheptide indole side ring centers on a cryptic carrier protein NosJ

那西肽吲哚侧环的生物合成以隐秘的载体蛋白 NosJ 为中心

阅读:6
作者:Wei Ding, Wenjuan Ji, Yujie Wu, Runze Wu, Wan-Qiu Liu, Tianlu Mo, Junfeng Zhao, Xiaoyan Ma, Wei Zhang, Ping Xu, Zixin Deng, Boping Tang, Yi Yu, Qi Zhang

Abstract

Nosiheptide is a prototypal thiopeptide antibiotic, containing an indole side ring in addition to its thiopeptide-characteristic macrocylic scaffold. This indole ring is derived from 3-methyl-2-indolic acid (MIA), a product of the radical S-adenosylmethionine enzyme NosL, but how MIA is incorporated into nosiheptide biosynthesis remains to be investigated. Here we report functional dissection of a series of enzymes involved in nosiheptide biosynthesis. We show NosI activates MIA and transfers it to the phosphopantetheinyl arm of a carrier protein NosJ. NosN then acts on the NosJ-bound MIA and installs a methyl group on the indole C4, and the resulting dimethylindolyl moiety is released from NosJ by a hydrolase-like enzyme NosK. Surface plasmon resonance analysis show that the molecular complex of NosJ with NosN is much more stable than those with other enzymes, revealing an elegant biosynthetic strategy in which the reaction flux is controlled by protein-protein interactions with different binding affinities.Thiopeptides such as nosiheptide are clinically-interesting antimicrobial natural products. Here the authors show the functional dissection of a series of enzymes involved in nosiheptide biosynthesis, revealing a unique biosynthetic pathway that centers on a previously-unknown carrier protein.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。