miR-26a mediates LC-PUFA biosynthesis by targeting the Lxrα-Srebp1 pathway in the marine teleost Siganus canaliculatus

miR-26a 通过靶向海洋硬骨鱼类 Siganus canaliculatus 的 Lxrα-Srebp1 通路介导 LC-PUFA 生物合成

阅读:6
作者:Cuiying Chen, Shuqi Wang, Yu Hu, Mei Zhang, Xianda He, Cuihong You, Xiaobo Wen, Óscar Monroig, Douglas R Tocher, Yuanyou Li

Abstract

MicroRNAs have been recently shown to be important regulators of lipid metabolism. However, the mechanisms of microRNA-mediated regulation of long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis in vertebrates remain largely unknown. Herein, we for the first time addressed the role of miR-26a in LC-PUFA biosynthesis in the marine rabbitfish Siganus canaliculatus The results showed that miR-26a was significantly down-regulated in liver of rabbitfish reared in brackish water and in S. canaliculatus hepatocyte line (SCHL) incubated with the LC-PUFA precursor α-linolenic acid, suggesting that miR-26a may be involved in LC-PUFA biosynthesis because of its abundance being regulated by factors affecting LC-PUFA biosynthesis. Opposite patterns were observed in the expression of liver X receptor α (lxrα) and sterol regulatory element-binding protein-1 (srebp1), as well as the LC-PUFA biosynthesis-related genes (Δ4 fads2, Δ6Δ5 fads2, and elovl5) in SCHL cells incubated with α-linolenic acid. Luciferase reporter assays revealed rabbitfish lxrα as a target of miR-26a, and overexpression of miR-26a in SCHL cells markedly reduced protein levels of Lxrα, Srebp1, and Δ6Δ5 Fads2 induced by the agonist T0901317. Moreover, increasing endogenous Lxrα by knockdown of miR-26a facilitated Srebp1 activation and concomitant increased expression of genes involved in LC-PUFA biosynthesis and consequently promoted LC-PUFA biosynthesis both in vitro and in vivo These results indicate a critical role of miR-26a in regulating LC-PUFA biosynthesis through targeting the Lxrα-Srebp1 pathway and provide new insights into the regulatory network controlling LC-PUFA biosynthesis and accumulation in vertebrates.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。