A 5 × 200 Gbps microring modulator silicon chip empowered by two-segment Z-shape junctions

采用两段 Z 形结点的 5 × 200 Gbps 微环调制器硅片

阅读:7
作者:Yuan Yuan, Yiwei Peng, Wayne V Sorin, Stanley Cheung, Zhihong Huang, Di Liang, Marco Fiorentino, Raymond G Beausoleil

Abstract

Optical interconnects have been recognized as the most promising solution to accelerate data transmission in the artificial intelligence era. Benefiting from their cost-effectiveness, compact dimensions, and wavelength multiplexing capability, silicon microring resonator modulators emerge as a compelling and scalable means for optical modulation. However, the inherent trade-off between bandwidth and modulation efficiency hinders the device performance. Here we demonstrate a dense wavelength division multiplexing microring modulator array on a silicon chip with a full data rate of 1 Tb/s. By harnessing the two individual p-n junctions with an optimized Z-shape doping profile, the inherent trade-off of silicon depletion-mode modulators is greatly mitigated, allowing for higher-speed modulation with energy consumption of sub-ten fJ/bit. This state-of-the-art demonstration shows that all-silicon modulators can practically enable future 200 Gb/s/lane optical interconnects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。