Protective role of AT(2) and B(1) receptors in kinin B(2)-receptor-knockout mice with myocardial infarction

AT(2)和B(1)受体在激肽B(2)受体敲除小鼠心肌梗死中的保护作用

阅读:8
作者:Jiang Xu, Oscar A Carretero, Liping Zhu, Edward G Shesely, Nour-Eddine Rhaleb, Xiangguo Dai, Luchen Wang, James J Yang, Xiao-Ping Yang

Abstract

AT(2)Rs [AngII (angiotensin II) type 2 receptors] contribute to the cardioprotective effects of angiotensin II receptor blockers, possibly via kinins acting on the B(1)R (B(1) receptor) and B(2)R (B(2) receptor). Recent studies have shown that a lack of B(2)R up-regulates B(1)R and AT(2)R; however, the pathophysiological relevance of such an event remains unclear. We hypothesized that up-regulation of AT(2)R and B(1)R compensates for the loss of B(2)R. Blockade of AT(2)R and/or B(1)R worsens cardiac remodelling and dysfunction following MI (myocardial infarction) in B(2)R(-/-) (B(2)-receptor-knockout mice). B(2)R(-/-) mice and WT (wild-type) controls were subjected to sham MI or MI and treated for 4 weeks with (i) vehicle, (ii) a B(1)R-ant (B(1)R antagonist; 300 μg/kg of body weight per day), (iii) an AT(2)R-ant [AT(2) receptor antagonist (PD123319); 20 mg/kg of body weight per day], or (iv) B(1)R-ant+AT(2)R-ant. B(2)R(-/-) mice had a greater MCSA (myocyte cross-sectional area) and ICF (interstitial collagen fraction) at baseline and after MI compared with WT controls. Cardiac function and increase in macrophage infiltration, TGFβ(1) (transforming growth factor β(1)) expression and ERK1/2 (extracellular-signal-regulated kinase 1/2) phosphorylation post-MI were similar in both strains. Blockade of AT(2)R or B(1)R worsened cardiac remodelling, hypertrophy and dysfunction associated with increased inflammation and ERK1/2 phosphorylation and decreased NO excretion in B(2)R(-/-) mice, which were exacerbated by dual blockade of B(1)R and AT(2)R. No such effects were seen in WT mice. Our results suggest that, in the absence of B(2)R, both B(1)R and AT(2)R play important compensatory roles in preventing deterioration of cardiac function and remodelling post-MI possibly via suppression of inflammation, TGFβ(1) and ERK1/2 signalling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。