On the prediction of neuronal microscale topology descriptors based on mesoscale recordings

基于中尺度记录的神经元微尺度拓扑描述符预测

阅读:6
作者:Mattia Bonzanni, David L Kaplan

Abstract

The brain possesses structural and functional hierarchical architectures organized over multiple scales. Considering that functional recordings commonly focused on a single spatial level, and because multiple scales interact with one another, we explored the behaviour of in silico neuronal networks across different scales. We established ad hoc relations of several topological descriptors (average clustering coefficient, average path length, small-world propensity, modularity, network degree, synchronizability and fraction of long-term connections) between different scales upon application and empirical validation of a Euclidian renormalization approach. We tested a simple network (distance-dependent model) as well as an artificial cortical network (Vertex; undirected and directed networks) finding the same qualitative power law relations of the parameters across levels: their quantitative nature is model dependent. Those findings were then organized in a workflow that can be used to predict, with approximation, microscale topologies from mesoscale recordings. The present manuscript not only presents a theoretical framework for the renormalization of biological neuronal network and their study across scales in light of the spatial features of the recording method but also proposes an applicable workflow to compare real functional networks across scales.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。