Neuroprotective Effects of Chrysin Mediated by Estrogenic Receptors Following Cerebral Ischemia and Reperfusion in Male Rats

雌激素受体介导白杨素对雄性大鼠脑缺血再灌注损伤的神经保护作用

阅读:6
作者:Maryam Khombi Shooshtari, Yaghoob Farbood, Seyed Mohammad Taghi Mansouri, Mohammad Badavi, Laya Sadat Khorsandi, Mohammad Ghasemi Dehcheshmeh, Ali Reza Sarkaki

Conclusion

Our data confirm that chrysin could potentially serve as a neuroprotective agent against devastating effects of cerebral I/R injury, which may be mediated via its interaction with ERs, especially ERβ.

Methods

Adult male Wistar rats were pretreated with chrysin (CH) (CH; 30 mg/kg; gavage; for 21 consecutive days) alone or with selective ERs antagonists (ERα antagonist MPP; ERβ antagonist PHTPP; IP) or nonselective ERs antagonist (ICI182780; IP). Then, the bilateral common carotid arteries were occluded for 20 min, which was followed by 72 h reperfusion. Subsequently, cognitive performance was evaluated by Morris Water Maze (MWM) and shuttle box tasks, and afterward, their hippocampi were removed for ELISA assays and H&E staining. Oxidative indicators Malondialdehyde (MDA) and Glutathione Peroxidase (GPx), as well as inflammation mediators interleukin (IL)-1β and tumor necrosis factor-alpha (TNFα), were measured using commercial kits.

Results

Results of the current study showed that the anti-oxidative and anti-inflammatory properties of CH are possible mechanisms that could improve cognitive deficits and prevent neuronal cell death following I/R (P<0.001). These effects were reversed by ICI182780 (P>0.05). Furthermore, when chrysin was co-treated with ERβ antagonist, PHTPP showed a weak neuroprotective effect in I/R rats. However, these parameters were not significantly different when chrysin was combined with ERα antagonist MPP.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。