Conclusions
Serum concentrations of prestin and otolin-1 may differ among healthy individuals according to their occupational noise exposure and have the potential to act as indicators of subclinical inner ear injury. To substantiate these preliminary observations, incorporating exposure assessment, especially via direct measurements of noise and vibration exposure, would markedly improve the reliability of our findings.
Methods
The study sample included 60 males, encompassing helicopter pilots, construction laborers, and office workers (n=20, each). Recruitment occurred during standard occupational health visits, with all participants presenting normal clinical audiograms. Serum levels of prestin and otolin-1 were measured in duplicate using commercially available immunoassays and compared across the three professional categories.
Results
HEMS pilots had the lowest mean serum prestin level at 211±27 pg/mL, followed by construction workers at 234±29 pg/mL, and office workers at 269±42 pg/mL (p<0.001, one-way analysis of variance), with all inter-group differences statistically significant (p<0.05, Tukey's post hoc tests). For otolin-1, HEMS pilots showed the highest mean at 216±20 pg/mL, with construction workers at 196±22 pg/mL, and office workers at 181±20 pg/mL (p<0.001, one-way analysis of variance). Statistically significant differences were found between HEMS pilots and both other groups for otolin-1 levels (p<0.05, Tukey's post hoc tests), but not between construction workers and office workers. Conclusions: Serum concentrations of prestin and otolin-1 may differ among healthy individuals according to their occupational noise exposure and have the potential to act as indicators of subclinical inner ear injury. To substantiate these preliminary observations, incorporating exposure assessment, especially via direct measurements of noise and vibration exposure, would markedly improve the reliability of our findings.
