Multivalent interactions with RNA drive recruitment and dynamics in biomolecular condensates in Xenopus oocytes

与 RNA 的多价相互作用驱动非洲爪蟾卵母细胞中生物分子凝聚物的募集和动力学

阅读:5
作者:Sarah E Cabral, Jessica P Otis, Kimberly L Mowry

Abstract

RNA localization and biomolecular condensate formation are key biological strategies for organizing the cytoplasm and generating cellular polarity. In Xenopus oocytes, RNAs required for germ layer patterning localize in biomolecular condensates, termed Localization bodies (L-bodies). Here, we have used an L-body RNA-binding protein, PTBP3, to test the role of RNA-protein interactions in regulating the biophysical characteristics of L-bodies in vivo and PTBP3-RNA condensates in vitro. Our results reveal that RNA-protein interactions drive recruitment of PTBP3 and localized RNA to L-bodies and that multivalent interactions tune the dynamics of the PTBP3 after localization. In a concentration-dependent manner, RNA becomes non-dynamic and interactions with the RNA determine PTBP3 dynamics within these biomolecular condensates in vivo and in vitro. Importantly, RNA, and not protein, is required for maintenance of the PTBP3-RNA condensates in vitro, pointing to a model where RNA serves as a non-dynamic substructure in these condensates.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。