Extracellular matrix-induced gene expression in human breast cancer cells

细胞外基质诱导人类乳腺癌细胞基因表达

阅读:7
作者:Nandor Garamszegi, Susanna P Garamszegi, Lina A Shehadeh, Sean P Scully

Abstract

Extracellular matrix (ECM) molecules modify gene expression through attachment-dependent (focal adhesion-related) integrin receptor signaling. It was previously unknown whether the same molecules acting as soluble peptides could generate signal cascades without the associated mechanical anchoring, a condition that may be encountered during matrix remodeling and degradation and relevant to invasion and metastatic processes. In the current study, the role of ECM ligand-regulated gene expression through this attachment-independent process was examined. It was observed that fibronectin, laminin, and collagen type I and II induce Smad2 activation in MCF-10A and MCF-7 cells. This activation is not caused by transforming growth factor (TGF)-beta ligand contamination or autocrine TGF involvement and is 3- to 5-fold less robust than the TGF-beta1 ligand. The resulting nuclear translocation of Smad4 in response to ECM ligand indicates downstream transcriptional responses occurring. Coimmunoprecipitation experiments determined that collagen type II and laminin act through interaction with integrin alpha(2)beta(1) receptor complex. The ECM ligand-induced Smad activation (termed signaling crosstalk) resulted in cell type and ligand-specific transcriptional changes, which are distinct from the TGF-beta ligand-induced responses. These findings show that cell-matrix communication is more complex than previously thought. Soluble ECM peptides drive transcriptional regulation through corresponding adhesion and non-attachment-related processes. The resultant gene expressional patterns correlate with pathway activity and not by the extent of Smad activation. These results extend the complexity and the existing paradigms of ECM-cell communication to ECM ligand regulation without the necessity of mechanical coupling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。