Molecular and cellular neuroinflammatory status of mouse brain after systemic lipopolysaccharide challenge: importance of CCR2/CCL2 signaling

系统性脂多糖刺激后小鼠脑的分子和细胞神经炎症状态:CCR2/CCL2 信号传导的重要性

阅读:8
作者:Julie Cazareth, Alice Guyon, Catherine Heurteaux, Joëlle Chabry, Agnès Petit-Paitel

Background

Genetic and environmental factors are critical elements influencing the etiology of major depression. It is now accepted that neuroinflammatory processes play a major role in neuropsychological disorders. Neuroinflammation

Conclusion

Together, we provide a detailed characterization of the molecular and cellular players involved in the establishment of neuroinflammation after systemic injection of LPS. This highlights the importance of the CCL2/CCR2 signaling and suggests a possible link with depressive disorders.

Methods

LPS was administered to C57BL/6 J mice by intraperitoneal injection; brains were collected and pro-inflammatory cytokine mRNA and proteins were measured. To examine the relative contribution of the different populations of brain immune cells to the occurrence of neuroinflammation after acute systemic inflammation, we precisely characterized them by flow cytometry, studied changes in their proportions and level of activation, and measured the amount of cytokines they released by Cytometric Bead Array™ after cell sorting and ex vivo culture. Because of the central role that the chemokine CCL2 seems to play in our paradigm, we studied the effect of CCL2 on the activity of serotonergic neurons of the raphe nucleus using electrophysiological recordings.

Results

We report that systemic LPS administration in mice caused a marked increase in pro-inflammatory IL-1β, IL-6, TNFα and CCL2 (monocyte chemoattractant protein-1) mRNA and protein levels in the brain. Moreover, we found that LPS caused microglia and CNS-associated phagocyte activation characterized by upregulation of CCR2, TLR4/CD14, CD80 and IL-4Rα, associated with overproduction of pro-inflammatory cytokines and chemokines, especially CCL2. LPS also induced a marked and selective increase of CCR2(+) inflammatory monocytes within the brain. Finally, we showed that CCL2 hyperpolarized serotonergic raphe neurons in mouse midbrain slices, thus probably reducing the serotonin tone in projection areas.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。