Background
Prostate cancer is the most commonly diagnosed cancer and second leading cause of cancer death in men. Enoxacin, a third-generation fluoroquinolone antibiotic, was found with anti-proliferative effects against many cancer types. This study was to further investigate its effects against prostate cancer and explore the underlying molecular mechanisms.
Conclusion
Our results suggested that Enoxacin could be developed as a potential anti-tumor agent against prostate carcinoma.
Methods
PC-3 cells were treated with Enoxacin at different concentrations. Tumor model was established by subcutaneously injecting PC-3 cells into nude mice. MTT assay was used to detect cell viability. ELISA assay, Annexin V/PI staining and TUNEL assay were used to detect apoptosis. RT-qPCR and western blot were used to detect the gene and protein expression, respectively.
Results
Our data showed that Enoxacin inhibited PC-3 cell proliferation and induced the apoptosis through up-regulating the expression of pro-apoptotic proteins, while down-regulating expression levels of anti-apoptotic proteins. Moreover, Enoxacin increased the gene and protein expression of the autophagy and endoplasmic reticulum stress markers. Treating tumor-bearing mice with Enoxacin significantly inhibited tumor growth in xenograft tumor model.
