Maleimide conjugated PEGylated liposomal antibiotic to combat multi-drug resistant Escherichia coli and Klebsiella pneumoniae with enhanced wound healing potential

马来酰亚胺结合的聚乙二醇化脂质体抗生素可对抗耐多药大肠杆菌和肺炎克雷伯菌,并增强伤口愈合潜力

阅读:5
作者:Darshan Narendrabhai Ladva, Pradeep Pushparaj Selvadoss, Grishma Kantibhai Chitroda, Sivaraman Dhanasekaran, Jayshree Nellore, Jayakrishna Tippabathani, Sundar Manoharan Solomon

Abstract

Antibiotic resistance is a significant threat, leaving us vulnerable to bacterial infections. Novel strategies are needed to combat bacterial resistance beyond discovering new antibiotics. This research focuses on using maleimide conjugated PEGylated liposomes (Mal-PL-Ab) to individually encapsulate a variety of antibiotics (ceftriaxone, cephalexin, doxycycline, piperacillin, ampicillin, and ceftazidime) and enhance their delivery against multi-drug resistant (MDR) bacteria like Escherichia coli (E. coli) and Klebsiella pneumoniae (K. pneumoniae). Mal-PL-Ab, with an average size of 84.2 nm ± 4.32 nm, successfully encapsulated these antibiotics with an encapsulation efficiency of 37.73 ± 3.19%. Compared to non-PEGylated liposomes (L-Ab), Mal-PL-Ab exhibited reduced toxicity in human dermal cells, emphasizing the importance of PEGylation in minimizing adverse effects. Mal-PL-Ab significantly decreased the minimum inhibitory concentration (MIC) values against both E. coli and K. pneumoniae by 9.33-fold and eightfold reduction (compared to non-PEGylated liposomes with 2.33-fold and 2.33fold reduction), respectively, indicating enhanced efficacy against MDR strains. Furthermore, in vitro scratch assay and gene expression analysis of human dermal fibroblast revealed that Mal-PL-Ab promoted cell proliferation, migration, and wound healing through upregulation of cell cycle, DNA repair, and angiogenesis-related genes. Harnessing the power of encapsulation, Mal-PL-Ab presents a novel avenue for enhanced antibiotic delivery and wound healing, potentially transcending the limitations of traditional options.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。