Quantification of type II procollagen splice forms using alternative transcript-qPCR (AT-qPCR)

使用替代转录-qPCR(AT-qPCR)对 II 型前胶原剪接形式进行量化

阅读:7
作者:Audrey McAlinden, Kyu-Hwan Shim, Louisa Wirthlin, Soumya Ravindran, Thomas M Hering

Abstract

During skeletal development, the onset of chondrogenic differentiation is marked by expression of the α1(II) procollagen (Col2a1) gene. Exon 2 of Col2a1 codes for a cysteine-rich von Willebrand factor C-like domain. Chondroprogenitors express the exon 2-containing IIA and IID splice forms by utilizing adjacent 5' splice sites separated by 3 base pairs. There is a shift to expression of the shorter, exon 2-lacking IIB splice form with further differentiation. Alternative splicing analysis of Col2a1 splice forms has often relied upon semi-quantitative PCR, using a single set of PCR primers to amplify multiple splice forms. We show that this widely used method is inaccurate due to mismatched amplification efficiency of different-sized PCR products. We have developed the TaqMan®-based AT-qPCR (Alternative Transcript-qPCR) assay to more accurately quantify alternatively spliced mRNA, and demonstrate the measurement of Col2a1 splice form expression in differentiating ATDC5 cells in vitro, and in wild type mouse embryonic and postnatal cartilage in vivo. The AT-qPCR assay is based on the use of a multiple-amplicon standard (MAS) plasmid, containing a chemically synthesized cluster of splice site-spanning PCR amplicons, to quantify alternative splice forms by standard curve-based qPCR. The MAS plasmid designed for Col2a1 also contained an 18S rRNA amplicon for sample normalization, and an amplicon corresponding to a region spanning exon 52-53 to measure total Col2a1 mRNA. In mouse E12.5 to P70 cartilages, we observed the expected switch between the IIA and IIB splice forms; no IID or IIC splice products were observed. However, in the ATDC5 cultures, predominant expression of the IIA and IID splice forms was found at all times in culture. Additionally, we observed that the sum of the IIA, IIB and IID splice forms comprises only a small fraction of Col2a1 transcripts containing the constitutive exon 52-53 junction. We conclude from our results that the majority of ATDC5 cells in the assay described in this study remained as chondroprogenitors during culture in standard differentiation conditions, and that additional Col2a1 transcripts may be present. The validity of this novel AT-qPCR assay was confirmed by demonstrating the expected Col2a1 isoform expression patterns in vivo in developing mouse cartilage. The ability to measure true levels of procollagen type II splice forms will provide better monitoring of chondrocyte differentiation in other model systems. In addition, the AT-qPCR assay described here could be applied to any gene of interest to detect and quantify known and predicted alternative splice forms and can be scaled up for high throughput assays.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。