Deletion of TolC orthologs in Francisella tularensis identifies roles in multidrug resistance and virulence

土拉弗朗西斯菌中 TolC 直系同源物的缺失确定了其在多药耐药性和毒力中的作用

阅读:8
作者:Horacio Gil, Gabrielle J Platz, Colin A Forestal, Michael Monfett, Chandra Shekhar Bakshi, Timothy J Sellati, Martha B Furie, Jorge L Benach, David G Thanassi

Abstract

The Gram-negative bacterium Francisella tularensis is the causative agent of tularemia. Interest in this zoonotic pathogen has increased due to its classification as a category A agent of bioterrorism, but little is known about the molecular mechanisms underlying its virulence, and especially what secretion systems and virulence factors are present. In this study, we characterized two genes in the F. tularensis genome, tolC and a gene we term ftlC, whose products have high homology with the Escherichia coli TolC protein. TolC functions as the outer membrane channel component for both type I secretion and multidrug efflux systems. We constructed deletion mutations of these genes in the F. tularensis live vaccine strain by allelic replacement. Deletion of either tolC or ftlC caused increased sensitivity to various antibiotics, detergents, and dyes, indicating both genes are involved in the multidrug resistance machinery of F. tularensis. Complementation of the deletion mutations in trans restored drug resistance. Neither tolC nor ftlC was required for replication of the live vaccine strain in murine bone marrow-derived macrophages. However, deletion of tolC, but not ftlC, caused a significant attenuation of virulence in a mouse model of tularemia that could be complemented by addition of tolC in trans. Thus, tolC is a critical virulence factor of F. tularensis in addition to its role in multidrug resistance, which suggests the presence of a functional type I secretion system.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。