Enhanced depth-independent chondrocyte proliferation and phenotype maintenance in an ultrasound bioreactor and an assessment of ultrasound dampening in the scaffold

超声生物反应器中增强的深度独立软骨细胞增殖和表型维持以及对支架中超声衰减的评估

阅读:6
作者:Sanjukta Guha Thakurta, Mikail Kraft, Hendrik J Viljoen, Anuradha Subramanian

Abstract

Chondrocyte-seeded scaffolds were cultured in an ultrasound (US)-assisted bioreactor, which supplied the cells with acoustic energy around resonance frequencies (~5.0 MHz). Polyurethane-polycarbonate (BM), chitosan (CS) and chitosan-n-butanol (CSB) based scaffolds with varying porosities were chosen and the following US regimen was employed: 15 kPa and 60 kPa, 5 min per application and 6 applications per day for 21 days. Non-stimulated scaffolds served as control. For BM scaffolds, US stimulation significantly impacted cell proliferation and depth-independent cell population density compared to controls. The highest COL2A1/COL1A1 ratios and ACAN mRNA were noted on US-treated BM scaffolds compared to controls. A similar trend was noted on US-treated cell-seeded CS and CSB scaffolds, though COL2A1/COL1A1 ratios were significantly lower compared to BM scaffolds. Expression of Sox-9 was also elevated under US and paralleled the COL2A1/COL1A1 ratio. As an original contribution, a simplified mathematical model based on Biot theory was developed to understand the propagation of the incident US wave through the scaffolds and the model analysis was connected to cellular responses. Scaffold architecture influenced the distribution of US field, with the US field being the least attenuated in BM scaffolds, thus coupling more mechanical energy into cells, and leading to increased cellular activity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。