Mitotic partitioning and selective reorganization of tissue-specific transcription factors in progeny cells

子代细胞中有丝分裂分配和组织特异性转录因子的选择性重组

阅读:8
作者:Sayyed K Zaidi, Daniel W Young, Shirwin M Pockwinse, Amjad Javed, Jane B Lian, Janet L Stein, Andre J van Wijnen, Gary S Stein

Abstract

Postmitotic gene expression requires restoration of nuclear organization and assembly of regulatory complexes. The hematopoietic and osteogenic Runx (Cbfa/AML) transcription factors are punctately organized in the interphase nucleus and provide a model for understanding the subnuclear organization of tissue-specific regulatory proteins after mitosis. Here we have used quantitative in situ immunofluorescence microscopy and quantitative image analysis to show that Runx factors undergo progressive changes in cellular localization during mitosis while retaining a punctate distribution. In comparison, the acetyl transferase p300 and acetylated histone H4 remain localized with DNA throughout mitosis while the RNA processing factor SC35 is excluded from mitotic chromatin. Subnuclear organization of Runx foci is completely restored in telophase, and Runx proteins are equally partitioned into progeny nuclei. In contrast, subnuclear organization of SC35 is restored subsequent to telophase. Our results show a sequential reorganization of Runx and its coregulatory proteins that precedes restoration of RNA processing speckles. Thus, mitotic partitioning and spatiotemporal reorganization of regulatory proteins together render progeny cells equivalently competent to support phenotypic gene expression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。