Numerical Solution of Two-Dimensional Time Fractional Mobile/Immobile Equation Using Explicit Group Methods

二维时间分数阶移动/不动方程的显式群方法数值解

阅读:6
作者:Fouad Mohammad Salama, Umair Ali #, Ajmal Ali #

Abstract

In this paper, we shall present the development of two explicit group schemes, namely, fractional explicit group (FEG) and modified fractional explicit group (MFEG) methods for solving the time fractional mobile/immobile equation in two space dimensions. The presented methods are formulated based on two Crank-Nicolson (C-N) finite difference schemes established at two different grid spacings. The stability and convergence of order O(τ2−α+h2)O(τ2-α+h2)<math><mrow><mi>O</mi> <mo>(</mo> <msup><mi>τ</mi> <mrow><mn>2</mn> <mo>-</mo> <mi>α</mi></mrow> </msup> <mo>+</mo> <msup><mi>h</mi> <mn>2</mn></msup> <mo>)</mo></mrow> </math> are rigorously proven using Fourier analysis. Several numerical experiments are conducted to verify the efficiency of the proposed methods. Meanwhile, numerical results show that the FEG and MFEG algorithms are able to reduce the computational times and iterations effectively while preserving good accuracy in comparison to the C-N finite difference method.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。