In vivo quantitative phosphoproteomic profiling identifies novel regulators of castration-resistant prostate cancer growth

体内定量磷酸化蛋白质组学分析确定了去势抵抗性前列腺癌生长的新调节剂

阅读:6
作者:N Jiang, K Hjorth-Jensen, O Hekmat, D Iglesias-Gato, T Kruse, C Wang, W Wei, B Ke, B Yan, Y Niu, J V Olsen, A Flores-Morales

Abstract

Prostate cancer remains a leading cause of cancer-related mortality worldwide owing to our inability to treat effectively castration-resistant tumors. To understand the signaling mechanisms sustaining castration-resistant growth, we implemented a mass spectrometry-based quantitative proteomic approach and use it to compare protein phosphorylation in orthotopic xenograft tumors grown in either intact or castrated mice. This investigation identified changes in phosphorylation of signaling proteins such as MEK, LYN, PRAS40, YAP1 and PAK2, indicating the concomitant activation of several oncogenic pathways in castration-resistant tumors, a notion that was confirmed by tumor transcriptome analysis. Further analysis demonstrated that the activation of mTORC1, PAK2 and the increased levels of YAP1 in castration-resistant tumors can be explained by the loss of androgen inhibitory actions. The analysis of clinical samples demonstrated elevated levels of PAK2 and YAP1 in castration-resistant tumors, whereas knockdown experiments in androgen-independent cells demonstrated that both YAP1 and PAK2 regulate cell colony formation and cell invasion activity. PAK2 also influenced cell proliferation and mitotic timing. Interestingly, these phenotypic changes occur in the absence of obvious alterations in the activity of AKT, MAPK or mTORC1 pathways, suggesting that PAK2 and YAP1 may represent novel targets for the treatment of castration-resistant prostate cancer. Pharmacologic inhibitors of PAK2 (PF-3758309) and YAP1 (Verteporfin) were able to inhibit the growth of androgen-independent PC3 xenografts. This work demonstrates the power of applying high-resolution mass spectrometry in the proteomic profiling of tumors grown in vivo for the identification of novel and clinically relevant regulatory proteins.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。