Exploring Splice-Site Mutations in LAMA2-Related Muscular Dystrophies: A Comprehensive Analysis of Genotypic and Phenotypic Patterns

探索 LAMA2 相关肌营养不良症中的剪接位点突变:基因型和表型模式的综合分析

阅读:8
作者:Samira Nmer, Amina Ameli, Said Trhanint, Sana Chaouki, Laila Bouguenouch, Karim Ouldim

Abstract

LAMA2-related muscular dystrophies (LAMA2-RDs) constitute the most prevalent subtype of congenital muscular dystrophies (CMDs). The clinical spectrum of LAMA2-RDs exhibits considerable diversity, particularly in motor development and disease progression. Phenotypic variability ranges from severe, early-onset presentation, known as merosin-deficient CMD type 1A, to milder, late-onset presentations, including limb-girdle muscular dystrophy-like phenotype. In this study, whole exome sequencing (WES) was applied to a family with a single proband affected by severe muscular dystrophy. The identified causative mutation was a biallelic splice-site mutation in intron 58 of the LAMA2 gene, leading to a premature termination codon in the critical G domain of laminin-α2 and resulting in a severe phenotype. Additionally, we summarized previously reported splice-site mutations to investigate the clinical and transcription consequences of these mutations. Our findings conclude that splice-site mutations predominantly lead to severe MDC1A, whether in a homozygous or heterozygous state, often associated with another loss-of-function mutation. Besides, splice-site mutations with available analysis of their transcriptional consequences were found to be responsible for exon skipping in most cases and the loss of the reading frame. These findings revealed the importance of WES in identifying disease-causing mutations, particularly in highly diversified pathologies like LAMA2-RDs. The results also underscore the importance of transcriptional analysis in determining the impact of splice-site mutations and the phenotype of LAMA2-RDs on patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。