miR-488 inhibits cell growth and metastasis in renal cell carcinoma by targeting HMGN5

miR-488 通过靶向 HMGN5 抑制肾细胞癌细胞生长和转移

阅读:9
作者:Xin Wei, Lili Yu, Xiangbo Kong

Conclusion

These data indicated that miR-488 acted as a tumor suppressor in RCC proliferation and invasion by targeting HMGN5, which might provide potential therapeutic biomarker for RCC patients.

Methods

The expression levels of miR-488 were detected in 38 paired RCC tumor samples and cell lines by quantitative real-time polymerase chain reaction method. miR-488 was upregulated by mimics transfection in RCC cell lines. MTT, colony formation, transwell assay, flow cytometry assay, and a xenograft model were performed to determine cell proliferation, invasion, migration, epithelial-to-mesenchymal transition, and apoptosis in vitro and in vivo. Moreover, the potential target of miR-488 was verified by dual-luciferase reporter assay, quantitative real-time polymerase chain reaction, and Western blot. The correlation between miR-488 expression and its target gene expression was confirmed by Spearman's correlation analysis in 38 selected RCC tissue samples.

Purpose

microRNAs are thought to play crucial roles in tumorigenesis. Dysregulation of miR-488 has been implicated to be involved in several cancer progressions. However, the biological functions of miR-488 in renal cell carcinoma (RCC) remain unclear. This study aimed to explore the molecular mechanism underlying the role of miR-488 in RCC development. Materials and

Results

We found that miR-488 was remarkably downregulated in human RCC samples and cell lines compared with paired normal tissues and cell lines. Functional investigations revealed that overexpression of miR-488 significantly suppressed cell proliferation, invasion, and migration, and promoted cell apoptosis in RCC cells. Nucleosome binding protein 1 (high-mobility group nucleosome binding domain 5 [HMGN5]) was identified as a direct target of miR-488, and an inverse relationship was found between miR-488 expression and HMGN5 mRNA levels in RCC specimens. Rescue experiments suggested that restoration of HMGN5 partially abolished miR-488-mediated cell proliferation and invasion inhibition in RCC cells through regulating phosphatidylinositol 3-kinase/protein kinase B/the mammalian target of rapamycin and epithelial-to-mesenchymal transition signaling pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。