Exposure assessment of polycyclic aromatic hydrocarbons in refined coal tar sealant applications

精炼煤焦油密封剂应用中多环芳烃的暴露评估

阅读:8
作者:Seth McCormick, John E Snawder, I-Chen Chen, Jonathan Slone, Antonia M Calafat, Yuesong Wang, Lei Meng, Marissa Alexander-Scott, Michael Breitenstein, Belinda Johnson, Juliana Meadows, Cheryl Fairfield Estill

Background

Refined coal tar sealant (RCTS) emulsions are used to seal the surface of asphalt pavement. Nine of the 22 polycyclic aromatic hydrocarbons (PAHs) evaluated in this study are classified as known, probable, or possible human carcinogens. Exposure assessment research for RCTS workers has not been published previously. Objectives: The overall

Conclusions

The exposure results from RCTS worker samples cannot be explained by proximal factors such as nearby restaurants or construction. Air and skin concentration levels were substantially higher for RCTS workers than previously published levels among asphalt workers for all PAHs. PAH profiles on skin wipes were more consistent with RCTS sealant product than air samples. Last day post-shift urinary concentrations of 1-hydroxypyrene greatly exceeded the ACGIH BEI benchmark of 2.5 μg/L in 25 of 26 samples, which suggests occupational exposure and risk of genotoxicity. When pyrene and benzo[a]pyrene were both detected, concentration ratios from personal exposure samples were used to calculate the adjusted BEI. Concentrations of 1-hydroxypyrene exceeded the adjusted BEIs for air, hand wipes, and neck wipes in most cases. These results indicate the need to increase safety controls and exposure mitigation for RCTS workers.

Methods

A total of twenty-one RCTS workers were recruited from three companies. Personal and area air samples were collected using a modification of NIOSH Method 5515. Dermal exposure was assessed by hand and neck wipes before and after shifts. Twenty-two PAHs were quantified via gas chromatography-mass spectrometry selected ion monitoring. Internal dose was estimated by quantifying select PAH metabolites in pre- and post-shift urine samples using on-line solid phase extraction-high performance liquid chromatography-tandem mass spectrometry.

Results

PAH levels in the worker breathing zones were highest for naphthalene, acenaphthene, and phenanthrene, with geometric means of 52.1, 11.4, and 9.8 μg/m3, respectively. Hand wipe levels of phenanthrene, fluoranthene and pyrene were the highest among the 22 PAHs with geometric means of 7.9, 7.7, and 5.5 μg/cm2, respectively. Urinary PAH biomarkers for naphthalene, fluorene, phenanthrene, and pyrene were detected in all workers and were higher for post-shift samples than those collected pre-shift. Urinary concentrations of the metabolite 1-hydroxypyrene were greater than the American Conference of Governmental Industrial Hygienists (ACGIH) Biological Exposure Index (BEI) for this metabolite in 89 percent of post-shift samples collected on the final day of the work week or field survey. Statistically significances were found between concentrations of fluorene, naphthalene, and phenanthrene in the breathing zone of workers and their corresponding urinary PAH biomarkers. Workers were placed in two work place exposure groups: applicators and non-applicators. Applicators had higher total PAH concentrations in personal breathing zone (PBZ) air samples than non-applicators and were more likely to have post-shift hand wipe concentrations significantly higher than pre-shift concentrations. Concentrations of post-shift urinary biomarkers were higher, albeit not significantly, for applicators than non-applicators. Conclusions: The exposure results from RCTS worker samples cannot be explained by proximal factors such as nearby restaurants or construction. Air and skin concentration levels were substantially higher for RCTS workers than previously published levels among asphalt workers for all PAHs. PAH profiles on skin wipes were more consistent with RCTS sealant product than air samples. Last day post-shift urinary concentrations of 1-hydroxypyrene greatly exceeded the ACGIH BEI benchmark of 2.5 μg/L in 25 of 26 samples, which suggests occupational exposure and risk of genotoxicity. When pyrene and benzo[a]pyrene were both detected, concentration ratios from personal exposure samples were used to calculate the adjusted BEI. Concentrations of 1-hydroxypyrene exceeded the adjusted BEIs for air, hand wipes, and neck wipes in most cases. These results indicate the need to increase safety controls and exposure mitigation for RCTS workers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。