Micropillar-induced changes in cell nucleus morphology enhance bone regeneration by modulating the secretome

微柱诱导的细胞核形态变化通过调节分泌组来增强骨再生

阅读:4
作者:Xinlong Wang, Yiming Li, Zitong Lin, Indira Pla, Raju Gajjela, Basil Baby Mattamana, Maya Joshi, Yugang Liu, Huifeng Wang, Amy B Zun, Hao Wang, Ching-Man Wai, Vasundhara Agrawal, Cody L Dunton, Chongwen Duan, Bin Jiang, Vadim Backman, Tong-Chuan He, Russell R Reid, Yuan Luo, Guillermo A Ameer4

Abstract

Nuclear morphology, which modulates chromatin architecture, plays a critical role in regulating gene expression and cell functions. While most research has focused on the direct effects of nuclear morphology on cell fate, its impact on the cell secretome and surrounding cells remains largely unexplored, yet is especially crucial for cell-based therapies. In this study, we fabricated implants with a micropillar topography using methacrylated poly(octamethylene citrate)/hydroxyapatite (mPOC/HA) composites to investigate how micropillar-induced nuclear deformation influences cell paracrine signaling for osteogenesis and cranial bone regeneration. In vitro, cells with deformed nuclei showed enhanced secretion of proteins that support extracellular matrix (ECM) organization, which promoted osteogenic differentiation in neighboring human mesenchymal stromal cells (hMSCs). In a mouse model with critical-size cranial defects, nuclear-deformed hMSCs on micropillar mPOC/HA implants elevated Col1a2 expression, contributing to bone matrix formation, and drove cell differentiation toward osteogenic progenitor cells. These findings indicate that micropillars not only enhance the osteogenic differentiation of human mesenchymal stromal cells (hMSCs) but also modulate the secretome, thereby influencing the fate of surrounding cells through paracrine effects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。