A Magnetosome-Based Platform for Flow Biocatalysis

基于磁小体的流动生物催化平台

阅读:7
作者:Esther Mittmann, Frank Mickoleit, Denis S Maier, Sabrina Y Stäbler, Marius A Klein, Christof M Niemeyer, Kersten S Rabe, Dirk Schüler

Abstract

Biocatalysis in flow reactor systems is of increasing importance for the transformation of the chemical industry. However, the necessary immobilization of biocatalysts remains a challenge. We here demonstrate that biogenic magnetic nanoparticles, so-called magnetosomes, represent an attractive alternative for the development of nanoscale particle formulations to enable high and stable conversion rates in biocatalytic flow processes. In addition to their intriguing material characteristics, such as high crystallinity, stable magnetic moments, and narrow particle size distribution, magnetosomes offer the unbeatable advantage over chemically synthesized nanoparticles that foreign protein "cargo" can be immobilized on the enveloping membrane via genetic engineering and thus, stably presented on the particle surface. To exploit these advantages, we develop a modular connector system in which abundant magnetosome membrane anchors are genetically fused with SpyCatcher coupling groups, allowing efficient covalent coupling with complementary SpyTag-functionalized proteins. The versatility of this approach is demonstrated by immobilizing a dimeric phenolic acid decarboxylase to SpyCatcher magnetosomes. The functionalized magnetosomes outperform similarly functionalized commercial particles by exhibiting stable substrate conversion during a 60 h period, with an average space-time yield of 49.2 mmol L-1 h-1. Overall, our results demonstrate that SpyCatcher magnetosomes significantly expand the genetic toolbox for particle surface functionalization and increase their application potential as nano-biocatalysts.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。