Anticolon cancer activity of largazole, a marine-derived tunable histone deacetylase inhibitor

海洋来源的可调节组蛋白去乙酰化酶抑制剂拉格唑的抗结肠癌活性

阅读:10
作者:Yanxia Liu, Lilibeth A Salvador, Seongrim Byeon, Yongcheng Ying, Jason C Kwan, Brian K Law, Jiyong Hong, Hendrik Luesch

Abstract

Histone deacetylases (HDACs) are validated targets for anticancer therapy as attested by the approval of suberoylanilide hydroxamic acid (SAHA) and romidepsin (FK228) for treating cutaneous T cell lymphoma. We recently described the bioassay-guided isolation, structure determination, synthesis, and target identification of largazole, a marine-derived antiproliferative natural product that is a prodrug that releases a potent HDAC inhibitor, largazole thiol. Here, we characterize the anticancer activity of largazole by using in vitro and in vivo cancer models. Screening against the National Cancer Institute's 60 cell lines revealed that largazole is particularly active against several colon cancer cell types. Consequently, we tested largazole, along with several synthetic analogs, for HDAC inhibition in human HCT116 colon cancer cells. Enzyme inhibition strongly correlated with the growth inhibitory effects, and differential activity of largazole analogs was rationalized by molecular docking to an HDAC1 homology model. Comparative genomewide transcript profiling revealed a close overlap of genes that are regulated by largazole, FK228, and SAHA. Several of these genes can be related to largazole's ability to induce cell cycle arrest and apoptosis. Stability studies suggested reasonable bioavailability of the active species, largazole thiol. We established that largazole inhibits HDACs in tumor tissue in vivo by using a human HCT116 xenograft mouse model. Largazole strongly stimulated histone hyperacetylation in the tumor, showed efficacy in inhibiting tumor growth, and induced apoptosis in the tumor. This effect probably is mediated by the modulation of levels of cell cycle regulators, antagonism of the AKT pathway through insulin receptor substrate 1 down-regulation, and reduction of epidermal growth factor receptor levels.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。