Sustainable upcycling of mixed spent cathodes to a high-voltage polyanionic cathode material

将混合废阴极可持续地升级为高压多聚阴离子阴极材料

阅读:8
作者:Guanjun Ji #, Di Tang #, Junxiong Wang, Zheng Liang, Haocheng Ji, Jun Ma, Zhaofeng Zhuang, Song Liu, Guangmin Zhou, Hui-Ming Cheng

Abstract

Sustainable battery recycling is essential for achieving resource conservation and alleviating environmental issues. Many open/closed-loop strategies for critical metal recycling or direct recovery aim at a single component, and the reuse of mixed cathode materials is a significant challenge. To address this barrier, here we propose an upcycling strategy for spent LiFePO4 and Mn-rich cathodes by structural design and transition metal replacement, for which uses a green deep eutectic solvent to regenerate a high-voltage polyanionic cathode material. This process ensures the complete recycling of all the elements in mixed cathodes and the deep eutectic solvent can be reused. The regenerated LiFe0.5Mn0.5PO4 has an increased mean voltage (3.68 V versus Li/Li+) and energy density (559 Wh kg-1) compared with a commercial LiFePO4 (3.38 V and 524 Wh kg-1). The proposed upcycling strategy can expand at a gram-grade scale and was also applicable for LiFe0.5Mn0.5PO4 recovery, thus achieving a closed-loop recycling between the mixed spent cathodes and the next generation cathode materials. Techno-economic analysis shows that this strategy has potentially high environmental and economic benefits, while providing a sustainable approach for the value-added utilization of waste battery materials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。