Insights into the catalytic mechanism of a bacterial hydrolytic dehalogenase that degrades the fungicide chlorothalonil

深入了解细菌水解脱卤酶降解杀菌剂百菌清的催化机制

阅读:8
作者:Xinhang Yang, Brian Bennett, Richard C Holz

Abstract

Chlorothalonil (2,4,5,6-tetrachloroisophtalonitrile; TPN) is one of the most commonly used fungicides in the United States. Given TPN's widespread use, general toxicity, and potential carcinogenicity, its biodegradation has garnered significant attention. Here, we developed a direct spectrophotometric assay for the Zn(II)-dependent, chlorothalonil-hydrolyzing dehalogenase from Pseudomonas sp. CTN-3 (Chd), enabling determination of its metal-binding properties; pH dependence of the kinetic parameters kcat, Km , and kcat/Km ; and solvent isotope effects. We found that a single Zn(II) ion binds a Chd monomer with a Kd of 0.17 μm, consistent with inductively coupled plasma MS data for the as-isolated Chd dimer. We observed that Chd was maximally active toward chlorothalonil in the pH range 7.0-9.0, and fits of these data yielded a pKES1 of 5.4 ± 0.2, a pKES2 of 9.9 ± 0.1 (k'cat = 24 ± 2 s-1), a pKE1 of 5.4 ± 0.3, and a pKE2 of 9.5 ± 0.1 (k'cat/k' m = 220 ± 10 s-1 mm-1). Proton inventory studies indicated that one proton is transferred in the rate-limiting step of the reaction at pD 7.0. Fits of UV-visible stopped-flow data suggested a three-step model and provided apparent rate constants for intermediate formation (i.e. a k'2 of 35.2 ± 0.1 s-1) and product release (i.e. a k'3 of 1.1 ± 0.2 s-1), indicating that product release is the slow step in catalysis. On the basis of these results, along with those previously reported, we propose a mechanism for Chd catalysis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。