The Effects of Placental Mesenchymal Stem Cells Labeled With Ultrasmall Superparamagnetic Iron Oxides on the Growth of Colorectal Cancer Cells

超小超顺磁性氧化铁标记的胎盘间充质干细胞对结直肠癌细胞生长的影响

阅读:12
作者:Fang Wang, Hua He, Yao Xiong, Jie-Ting Hu, Yu-Lin Guo

Conclusions

Ultrasmall superparamagnetic iron oxides-labeled PMSCs injected into CRC transplanted tumors can be studied for a long period of time. Furthermore, 3.0-T MRI in vivo molecular imaging was demonstrated to be effective for CRC intervention.

Methods

Twenty subcutaneous CRC HT-29 xenograft model in immunodeficient mice was established. Mice injected with labeled PMSCs were considered as the experimental group. Thereafter, the growth and MR signal changes of xenograft tumors of every nude mouse were measured. Then, growth curve was plotted, and the MR image quality in different sequences was analyzed. Pathological staining was performed after MR scan.

Objective

Colorectal cancer (CRC) is one of the most common malignant tumors worldwide, with effective intervention and treatment being essential for CRC management. This study investigated the effects of human placental mesenchymal stem cells (PMSCs) labeled with ultrasmall superparamagnetic iron oxides (USPIOs) on the growth of CRC cells and the feasibility of 3.0-T magnetic resonance (MR) imaging as an in vivo tracer.

Results

Ultrasmall superparamagnetic iron oxides-labeled PMSCs had no significant influence on biological characteristics ( P > 0.05). The growth of tumors in mice in the experimental group before the injection of PMSCs was similar to that of the control group. Contrarily, the tumor growth rate in the experimental group on day 5 post-PMSCs injection was slightly lower than that of the control group. Moreover, the tumor volume on day 14 was noticeably smaller than in the control group. The tracing ability of T2* mapping sequences for USPIOs-labeled cells was significantly more effective than T2-weighted image and T2 mapping sequences. Conclusions: Ultrasmall superparamagnetic iron oxides-labeled PMSCs injected into CRC transplanted tumors can be studied for a long period of time. Furthermore, 3.0-T MRI in vivo molecular imaging was demonstrated to be effective for CRC intervention.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。