Studying early stages of fibronectin fibrillogenesis in living cells by atomic force microscopy

利用原子力显微镜研究活细胞中纤连蛋白纤维形成的早期阶段

阅读:5
作者:Tetyana Gudzenko, Clemens M Franz

Abstract

Fibronectin (FN) is an extracellular matrix protein that can be assembled by cells into large fibrillar networks, but the dynamics of FN remodeling and the transition through intermediate fibrillar stages are incompletely understood. Here we used a combination of fluorescence microscopy and time-lapse atomic force microscopy (AFM) to visualize initial stages of FN fibrillogenesis in living fibroblasts at high resolution. Initial FN nanofibrils form within <5 min of cell-matrix contact and subsequently extend at a rate of 0.25 μm/min at sites of cell membrane retraction. FN nanofibrils display a complex linear array of globular features spaced at varying distances, indicating the coexistence of different conformational states within the fibril. In some cases, initial fibrils extended in discrete increments of ∼ 800 nm during a series of cyclical membrane retractions, indicating a stepwise fibrillar extension mechanism. In presence of Mn(2+), a known activator of integrin adhesion to FN, fibrillogenesis was accelerated almost threefold to 0.68 μm/min and fibrillar dimensions were increased, underlining the importance of integrin activation for early FN fibrillogenesis. FN fibrillogenesis visualized by time-lapse AFM thus provides new structural and mechanistic insight into initial steps of cell-driven FN fibrillogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。