Efficient removal of noxious methylene blue and crystal violet dyes at neutral conditions by reusable montmorillonite/NiFe2O4@amine-functionalized chitosan composite

可重复使用的蒙脱石/NiFe2O4@胺功能化壳聚糖复合材料在中性条件下有效去除有毒亚甲蓝和结晶紫染料

阅读:8
作者:Hassanien Gomaa, Eman M Abd El-Monaem, Abdelazeem S Eltaweil, Ahmed M Omer

Abstract

The jeopardy of the synthetic dyes effluents on human health and the environment has swiftly aggravated, threatening human survival. Hence, sustained studies have figured out the most acceptable way to eliminate this poisonous contaminant. Thereby, our investigation aimed to fabricate montmorillonite/magnetic NiFe2O4@amine-functionalized chitosan (MMT-mAmCs) composite as a promising green adsorbent to remove the cationic methylene blue (MB) and crystal violet (CV) dyes from the wastewater in neutral conditions. Interestingly, MMT-mAmCs composite carries high negative charges at a wide pH range from 4 to 11 as clarified from zeta potential measurements, asserting its suitability to adsorb the cationic contaminants. In addition, the experimental study confirmed that the optimum pH to adsorb both MB and CV was pH 7, inferring the ability of MMT-mAmCs to adsorb both cationic dyes in simple process conditions. Furthermore, the ferromagnetic behavior of the MMT-mAmCs composite is additional merit to our adsorbent that provides facile, fast, and flawless separation. Notably, the as-fabricated composite revealed an auspicious adsorbability towards the adsorptive removal of MB and CV, since the maximum adsorption capacity of MB and CV were 137 and 118 mg/g, respectively. Moreover, the isotherm and kinetic investigatins depicted that the adsorption of both cationic dyes fitted Langmuir and Pseudo 2nd order models, respectively. Besides, the advanced adsorbent preserved satisfactory adsorption characteristics with maximal removal efficacy exceeding 87% after reuse for ten consecutive cycles. More importantly, MMT-mAmCs efficiently adsorbed MB and CV from real agricultural water, Nile river water and wastewater samples at the neutral pH medium, reflecting its potentiality to be a superb reusable candidate for adsorptive removal cationic pollutants from their aquatic media.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。