The conserved DNA-binding protein WhiA is involved in cell division in Bacillus subtilis

保守的 DNA 结合蛋白 WhiA 参与枯草芽孢杆菌的细胞分裂

阅读:6
作者:Katarina Surdova, Pamela Gamba, Dennis Claessen, Tjalling Siersma, Martijs J Jonker, Jeff Errington, Leendert W Hamoen

Abstract

Bacterial cell division is a highly coordinated process that begins with the polymerization of the tubulin-like protein FtsZ at midcell. FtsZ polymerization is regulated by a set of conserved cell division proteins, including ZapA. However, a zapA mutation does not result in a clear phenotype in Bacillus subtilis. In this study, we used a synthetic-lethal screen to find genes that become essential when ZapA is mutated. Three transposon insertions were found in yvcL. The deletion of yvcL in a wild-type background had only a mild effect on growth, but a yvcL zapA double mutant is very filamentous and sick. This filamentation is caused by a strong reduction in FtsZ-ring assembly, suggesting that YvcL is involved in an early stage of cell division. YvcL is 25% identical and 50% similar to the Streptomyces coelicolor transcription factor WhiA, which induces ftsZ and is required for septation of aerial hyphae during sporulation. Using green fluorescent protein fusions, we show that YvcL localizes at the nucleoid. Surprisingly, transcriptome analyses in combination with a ChIP-on-chip assay gave no indication that YvcL functions as a transcription factor. To gain more insight into the function of YvcL, we searched for suppressors of the filamentous phenotype of a yvcL zapA double mutant. Transposon insertions in gtaB and pgcA restored normal cell division of the double mutant. The corresponding proteins have been implicated in the metabolic sensing of cell division. We conclude that YvcL (WhiA) is involved in cell division in B. subtilis through an as-yet-unknown mechanism.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。