Constitutively synthesized nitric oxide is a physiological negative regulator of mammalian angiogenesis mediated by basic fibroblast growth factor

组成性合成的一氧化氮是碱性成纤维细胞生长因子介导的哺乳动物血管生成的生理负调节剂

阅读:5
作者:K Norrby

Abstract

We recently reported that the systemically administered nitric oxide synthase (NOS) inhibitor Nw-nitro-L-arginine methyl ester, L-NAME, administered before, during and after the angiogenic treatment stimulated angiogenesis induced by basic fibroblast growth factor, bFGF, in the rat. This suggests that suppression of constitutively expressed NOS, cNOS, plus inducible NOS, iNOS, and thus reduced production of nitric oxide, NO, was the stimulating factor. In those studies, the rat mesenteric-window angiogenesis assay was used. Moreover, the systemic administration of a NO releaser inhibited bFGF-mediated angiogenesis. Using the same experimental system, we have now studied whether the inhibition of cNOS alone in adult animals under physiological conditions, i.e. prior to the administration of the angiogenic stimulation with bFGF, affected the subsequent angiogenic response. cNOS constitute endothelial cell NOS (ecNOS) and neuronal NOS (nNOS). L-NAME or its inactive enantiomer Nw-nitro-D-arginine methyl ester, D-NAME, were given continuously in the drinking water (1.0 g/L) during 14 days prior to the start of the treatment with bFGF. The treatment with L-NAME significantly enhanced the subsequent angiogenic response. NO synthesized under physiological conditions by ecNOS in endothelial cells and platelets or nNOS in platelets may thus act as a first constitutional angiostatic factor in bFGF-mediated mammalian angiogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。