NAD+ deficiency primes defense metabolism via 1O2-escalated jasmonate biosynthesis in plants

NAD+ 缺乏通过 1O2 促进植物中的茉莉酸生物合成来促进防御代谢

阅读:6
作者:Yechun Hong #, Zongjun Yu #, Qian Zhou, Chunyu Chen, Yuqiong Hao, Zhen Wang, Jian-Kang Zhu, Hongwei Guo, Ancheng C Huang

Abstract

Nicotinamide adenine dinucleotide (NAD+) is a redox cofactor and signal central to cell metabolisms. Disrupting NAD homeostasis in plant alters growth and stress resistance, yet the underlying mechanisms remain largely unknown. Here, by combining genetics with multi-omics, we discover that NAD+ deficiency in qs-2 caused by mutation in NAD+ biosynthesis gene-Quinolinate Synthase retards growth but induces biosynthesis of defense compounds, notably aliphatic glucosinolates that confer insect resistance. The elevated defense in qs-2 is resulted from activated jasmonate biosynthesis, critically hydroperoxidation of α-linolenic acid by the 13-lipoxygenase (namely LOX2), which is escalated via the burst of chloroplastic ROS-singlet oxygen (1O2). The NAD+ deficiency-mediated JA induction and defense priming sequence in plants is recapitulated upon insect infestation, suggesting such defense mechanism operates in plant stress response. Hence, NAD homeostasis is a pivotal metabolic checkpoint that may be manipulated to navigate plant growth and defense metabolism for stress acclimation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。