Mechanism of assembly of snRNP cores assisted by ICln and the SMN complex in fission yeast

裂殖酵母中 ICln 和 SMN 复合物辅助 snRNP 核心组装的机制

阅读:4
作者:Yan Hu, Yan Hou, Shijie Zhou, Yingzhi Wang, Congcong Shen, Li Mu, Dan Su, Rundong Zhang

Abstract

The spliceosomal snRNP cores, each comprised of a snRNA and a seven-membered Sm ring (D1/D2/F/E/G/D3/B), are assembled by twelve chaperoning proteins in human. However, only six assembly-assisting proteins, ICln and the SMN complex (SMN/Gemin2/Gemin6-8), have been found in Schizosaccharomyces pombe (Sp). Here, we used recombinant proteins to reconstitute the chaperone machinery and investigated the roles of these proteins systematically. We found that, like the human system, the assembly in S. pombe requires ICln and the SMN complex sequentially. However, there are several significant differences. For instance, h_F/E/G forms heterohexamers and heterotrimers, while Sp_F/E/G only forms heterohexamers; h_Gemin2 alone can bind D1/D2/F/E/G, but Sp_Gemin2 cannot. Moreover, we found that Sp_Gemin2 is essential using genetic approaches. These mechanistic studies reveal that these six proteins are necessary and sufficient for Sm core assembly at the molecular level, and enrich our understanding of the chaperone systems in species variation and evolution.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。