Silencing of MYH7 ameliorates disease phenotypes in human iPSC-cardiomyocytes

MYH7 沉默可改善人类 iPSC 心肌细胞的疾病表型

阅读:4
作者:Alexandra Dainis, Kathia Zaleta-Rivera, Alexandre Ribeiro, Andrew Chia Hao Chang, Ching Shang, Feng Lan, Paul W Burridge, W Robert Liu, Joseph C Wu, Alex Chia Yu Chang, Beth L Pruitt, Matthew Wheeler, Euan Ashley

Abstract

Allele-specific RNA silencing has been shown to be an effective therapeutic treatment in a number of diseases, including neurodegenerative disorders. Studies of allele-specific silencing in hypertrophic cardiomyopathy (HCM) to date have focused on mouse models of disease. We here examine allele-specific silencing in a human-cell model of HCM. We investigate two methods of silencing, short hairpin RNA (shRNA) and antisense oligonucleotide (ASO) silencing, using a human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) model. We used cellular micropatterning devices with traction force microscopy and automated video analysis to examine each strategy's effects on contractile defects underlying disease. We find that shRNA silencing ameliorates contractile phenotypes of disease, reducing disease-associated increases in cardiomyocyte velocity, force, and power. We find that ASO silencing, while better able to target and knockdown a specific disease-associated allele, showed more modest improvements in contractile phenotypes. These findings are the first exploration of allele-specific silencing in a human HCM model and provide a foundation for further exploration of silencing as a therapeutic treatment for MYH7-mutation-associated cardiomyopathy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。