Disruption of blood meal-responsive serpins prevents Ixodes scapularis from feeding to repletion

破坏对血液进食有反应的丝氨酸蛋白酶抑制剂会阻止肩突硬蜱进食

阅读:7
作者:Mariam Bakshi, Tae Kwon Kim, Albert Mulenga

Abstract

Serine protease inhibitors (serpins) are thought to mediate the tick's evasion of the host's serine protease-mediated defense pathways such as inflammation and blood clotting. This study describes characterization and target validation of 11 blood meal-responsive serpins that are associated with nymph and adult Ixodes scapularis tick feeding as revealed by quantitative (q)RT-PCR and RNAi silencing analyses. Given the high number of targets, we used combinatorial (co) RNAi silencing to disrupt candidate serpins in two groups (G): seven highly identical and four non-identical serpins based on amino acid identities, here after called GI and GII respectively. We show that injection of both GI and GII co-dsRNA into unfed nymph and adult I. scapularis ticks triggered suppression of cognate serpin mRNA. We show that disruption of GII, but not GI serpins significantly reduced feeding efficiency of both nymph and adult I. scapularis ticks. Knockdown of GII serpin transcripts caused significant respective mortalities of ≤40 and 71% of nymphal and adult ticks that occurred within 24-48 h of attachment. This is significant, as the observed lethality preceded the tick feeding period when transmission of tick borne pathogens is predominant. We suspect that some of the GII serpins (S9, S17, S19 and S32) play roles in the tick detachment process in that upon detachment, mouthparts of GII co-dsRNA injected were covered with a whitish gel-like tissue that could be the tick cement cone. Normally, ticks do not retain tissue on their mouthparts upon detachment. Furthermore, disruption of GII serpins reduced tick blood meal sizes and the adult tick's ability to convert the blood meal to eggs. We discuss our data with reference to tick feeding physiology and conclude that some of the GII serpins are potential targets for anti-tick vaccine development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。