Direct Ink Writing of Poly(tetrafluoroethylene) (PTFE) with Tunable Mechanical Properties

具有可调机械性能的聚四氟乙烯 (PTFE) 直接墨水书写技术

阅读:5
作者:Zhuoran Jiang, Ozan Erol, Devina Chatterjee, Weinan Xu, Narutoshi Hibino, Lewis H Romer, Sung Hoon Kang, David H Gracias

Abstract

Poly(tetrafluoroethylene) (PTFE) is a unique polymer with highly desirable properties such as resistance to chemical degradation, biocompatibility, hydrophobicity, antistiction, and low friction coefficient. However, due to its high melt viscosity, it is not possible to three-dimensional (3D)-print PTFE structures using nozzle-based extrusion. Here, we report a new and versatile strategy for 3D-printing PTFE structures using direct ink writing (DIW). Our approach is based on a newly formulated PTFE nanoparticle ink and thermal treatment process. The ink was formulated by mixing an aqueous dispersion of surfactant-stabilized PTFE nanoparticles with a binding gum to optimize its shear-thinning properties required for DIW. We developed a multistage thermal treatment to fuse the PTFE nanoparticles, solidify the printed structures, and remove the additives. We have extensively characterized the rheological and mechanical properties and processing parameters of these structures using imaging, mechanical testing, and statistical design of experiments. Importantly, several of the mechanical and structural properties of the final-printed PTFE structures resemble that of compression-molded PTFE, and additionally, the mechanical properties are tunable. We anticipate that this versatile approach facilitates the production of 3D-printed PTFE components using DIW with significant potential applications in engineering and medicine.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。