Thermal- and Light-Induced Evolution of the 2D/3D Interface in Lead-Halide Perovskite Films

铅卤化物钙钛矿薄膜中 2D/3D 界面的热诱导和光诱导演化

阅读:10
作者:Francesca Fiorentino, Munirah D Albaqami, Isabella Poli, Annamaria Petrozza

Abstract

The instability of halide perovskites toward moisture is one of the main challenges in the field that needs to be overcome to successfully integrate these materials in commercially viable technologies. One of the most popular ways to ensure device stability is to form 2D/3D interfaces by using bulky organic molecules on top of the 3D perovskite thin film. Despite its promise, it is unclear whether this approach is able to avoid 3D bulk degradation under accelerated aging conditions, i.e., thermal stress and light soaking. In this regard, it is crucial to know whether the interface is structurally and electronically stable or not. In this work, we use the bulky phenethylammonium cation (PEA+) to form 2D layers on top of 3D single- and triple-cation halide perovskite films. The dynamical change of the 2D/3D interface is monitored under thermal stress and light soaking by in situ photoluminescence. We find that under pristine conditions the large organic cation diffuses only in 3D perovskite thin films of poor structural stability, i.e., single-cation MAPbI3. The same diffusion and a dynamical change of the crystalline structure of the 2D/3D interface are observed even on high-quality 3D films, i.e., triple-cation MAFACsPbI3, upon thermal stress at 85 °C and light soaking. Importantly, under such conditions, the resistance of the thin film to moisture is lost.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。