Overproduced bone marrow neutrophils in collagen-induced arthritis are primed for NETosis: An ignored pathological cell involving inflammatory arthritis

胶原诱导性关节炎中过量产生的骨髓中性粒细胞会导致 NETosis:一种被忽视的与炎性关节炎有关的病理细胞

阅读:6
作者:Danyi Xu, Yiming Lin, Jinming Shen, Jie Zhang, Jinghua Wang, Yuwei Zhang, Hong Zhang, Longgui Ning, Peihao Liu, Sha Li, Hang Zeng, Jin Lin, Chaohui Yu

Conclusions

We propose for the first time that the overproduced BM neutrophils in CIA mice are primed for NETosis in a G-CSF dependent manner, and these pathogenic cells may have an important role in inflammatory arthritis. Blocking this pathological process could be a potential strategy for the treatment of RA.

Methods

Granulocyte colony-stimulating factor (G-CSF) -/- mice and wild type (WT) C57BL/6 mice were immunized for collagen-induced arthritis (CIA). Histological scores of arthritis were evaluated. Immunohistochemistry staining with anti-Ly6G was conducted. Neutrophil extracellular traps (NETs) in joint sections were determined by immunofluorescence staining. BM neutrophils were isolated for flow cytometry and NETosis induction in vitro.

Results

Histological study showed significant neutrophil infiltrations in BML of CIA mice. Inhibition of BM neutrophil production by G-CSF knock out can obstruct the induction of BML and CIA. In addition to abundant infiltrated NETs intra-articular, remarkable NETosis primed BM neutrophils were infiltrated in BML of CIA mice, which was positively related to bone erosion. Neutrophils derived from G-CSF-/- mice have diminished ability of NETs formation in vitro, while G-CSF induction can enhance its capacity of NETs formation. Conclusions: We propose for the first time that the overproduced BM neutrophils in CIA mice are primed for NETosis in a G-CSF dependent manner, and these pathogenic cells may have an important role in inflammatory arthritis. Blocking this pathological process could be a potential strategy for the treatment of RA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。